This is an empirical appendix to the paper: Supporting the right workplace experience: A dynamic evaluation of three activation programmes for young job seekers in Slovakia

In our paper we analyse the employment chances of young jobseekers registered by the Slovak Public Employment Office (COLSAF). We aim at identifying the treatment effects of participation in three ALMP programmes facilitating workplace insertions in Slovakia during 2011.

rm(list=ls( ))
setwd("D:/Dropbox/DynamicALMP/")

library(pacman)
pacman::p_load(ggplot2,gridExtra,scales,haven,foreign,gdata,glmnet,readxl,stringr, dplyr, fmsb, ggpubr, kableExtra, matrixStats, patchwork)
#library(dplyr)
#library(kableExtra)


ro <- read_dta("enliven_Lukas_ro.dta",encoding = 'latin1')

###Correction of an old typo from the "enliven.dta" file
ro <- ro %>% mutate(
  kraj7 = case_when(
    ro$urad_kod %in% seq(34:40) ~ 1,
    ro$urad_kod == 46 ~ 1))
ro$kraj7[is.na(ro$kraj7)]<-0

ro <- ro %>% mutate(
  kraj8 = case_when(
    ro$urad_kod %in% seq(41:45) ~ 1))
ro$kraj8[is.na(ro$kraj8)]<-0
###END OF Correction of an old typo from the "enliven.dta" file

##Roma population in the village
AtlasRK_obce <- read.csv2("AtlasRK/AtlasRK_obce.csv", sep=",", col.names=c("Kraj", "Okres", "Obec_name", "obec", "PocOb", "roma_share", "roma_num", "roma_segrK", "segrK_pop", "segrK_pop_out", "segrK_pop_border", "segrK_pop_in", "roma_Int", "PrefLang"))
ro<-merge(ro, select(AtlasRK_obce, obec, roma_share), by = "obec", all.x = TRUE)
ro$roma_share<-as.numeric(ro$roma_share)
ro$roma_share[is.na(ro$roma_share)]<-0


#################################
## Number of inhabitants of the place of residence
obyvatelstvo <- read_excel("AtlasRK/obyvatelstvo.xlsx")
obeckod <- read_excel("AtlasRK/obeckod.xlsx")

obyvatelstvo <- select(obyvatelstvo, obec, 'OBDOBIE:2020')
names(obyvatelstvo)[2] <- '2020'

ciselnik <- read_excel("AtlasRK/Kopia_-_Ciselnik_spravnych_uzemi_SR.xlsx")
ciselnik$Obec_kod <- str_sub(ciselnik$Obec_kod, start= -6)
obeckod <- obeckod %>% group_by(officialTitle) %>% mutate(jedin = n())
obeckod$obec <- ifelse(obeckod$jedin >= 2, paste0(ciselnik$Obec_nazov[match(obeckod$code, ciselnik$Obec_kod)],', okres ', ciselnik$Okres_nazov[match(obeckod$code, ciselnik$Obec_kod)]), obeckod$officialTitle)

obyvatelstvo$obec_kod <- obeckod$code[match(obyvatelstvo$obec, obeckod$obec)] 
ro$population <- obyvatelstvo$`2020`[match(ro$obec, obyvatelstvo$obec_kod)] 
ro$population[is.na(ro$population)]<-mean(ro$population, na.rm=TRUE)



ro$roma5<-as.logical(ro$roma_share>0.05)
ro$roma10<-as.logical(ro$roma_share>0.1)

ro$primary<-as.logical(ro$edulev1==1 | ro$edulev2==1)
ro$secondary<-as.logical(ro$edulev3==1)
ro$tertiary<-as.logical(ro$edulev4==1)

ro$age20<-as.logical(ro$age>20)

ro$west<-as.logical(ro$kraj1==1 | ro$kraj2==1 | ro$kraj3==1)
ro$mid<-as.logical(ro$kraj4==1 | ro$kraj5==1 | ro$kraj6==1)
ro$east<-as.logical(ro$kraj7==1 | ro$kraj8==1)

ro$village<-as.logical(ro$population<4000)
ro$town<-as.logical(ro$population>=4000)


# if columns are logical (T,F) change it to numeric columns (1,0)
groups<-c("tertiary", "age20", "west", "mid", "east", "roma5", "village", "town")
logic_cols <- sapply(ro[,groups], is.logical)
ro[,groups] <- lapply(ro[,groups], as.numeric)

attach(ro)

covariates<- read.csv("list_of_covariates.csv",encoding = 'latin1', sep = ";")

Our database is constructed from COLSAF administrative data, covering the whole population of interest. This consists of all jobseekers, younger than 26, registered by COLSAF for at least one day during 2011. After excluding 1 424 individuals with a health disability and 2 143 individuals whose unemployment spell was longer than 5 years, we remain with 221 005 individuals.

Out of these:
14 475 (6.65%) participated in the first ALMP of interest - the Graduate practice (GP)
2 941 (1.33%) participated in the second ALMP of interest - the Activation works (AW)
1 240 (0.56%) participated in the third ALMP of interest - the Voluntary activation works (VAW)

1. Programme implementation

All three programmes shelter workplace insertions of young unemployed. The usual length of the participation is the same (6 months). Participations shorter than six months occur mostly in the case of GP (3, 4 and 5 months) and partialy in the case of VAW (3 months). Nevertheless, in terms of duration of programme participation, the three measures are comparable.

# Graph:Programme duration in months
theme_set(theme_bw())
colors <- c("GP" = "blue", "AW" = "red", "VAW" = "orange")
ggplot(ro) +
  geom_density(kernel = "gaussian", aes(x=time51, color="GP"), size=1) +
  geom_density(kernel = "gaussian", aes(x=time52, color="AW"), size=1, linetype="dotted") +
  geom_density(kernel = "gaussian", aes(x=time52a, color="VAW"), size=1, linetype="dashed") +
  labs(title="Graph A1: Programme duration in months", x="Months", y="Programme duration (density)", color="Programme", caption="Note: Duration is measured in days, end-of-month spikes are driven by participations usually ending by the end of the month.\n Source: Authors’ calculations using the COLSAF database") +
  scale_x_continuous(breaks = c(0,1,3,6,9,12)) +
  scale_color_manual(values = colors) +
  theme(legend.title = element_text(size=10, color = "black", face="bold"),
        legend.justification=c(1,0), 
        legend.position=c(0.95, 0.50),  
        legend.background = element_blank(),
        legend.key = element_blank(), plot.caption = element_text(hjust = 0)) 

A more significant difference can be observed in the usual timing of the start of the programme participation. While the participation in GP usually starts within the first 12 months, participation in AW usually takes place after one year of unemployment and also spread through later stages of the unemployment spell.

S51 <- as.numeric(entry51) - as.numeric(month_inflow)
S51[S51<0] <- NA
S52 <- as.numeric(entry52) - as.numeric(month_inflow)
S52[S52<0] <- NA
S52a <- as.numeric(entry52a) - as.numeric(month_inflow)
S52a[S52a<0] <- NA
YdurG <- as.numeric(month_outflow) - as.numeric(month_inflow)
YdurG[YdurG<0] <- NA

# Graph: Start of the programme implementation (in months)
theme_set(theme_bw())
colors <- c("GP" = "blue", "AW" = "red", "VAW" = "orange", "Unemployment duration" = "grey")
ggplot(ro) +
  stat_density(geom="area", kernel = "gaussian", aes(x=YdurG, color="Unemployment duration", alpha=0.5), size=1) +
  geom_density(kernel = "gaussian", aes(x=S51, color="GP"), size=1) +
  geom_density(kernel = "gaussian", aes(x=S52, color="AW"), size=1, linetype="dotted") +
  geom_density(kernel = "gaussian", aes(x=S52a, color="VAW"), size=1, linetype="dashed") +
  labs(title="Graph A2: Start of the programme implementation in months", x="Months", y="Start of the programme implementation (density)", color="Programme", caption="Source: Authors’ calculations using the COLSAF database") +
  scale_x_continuous(breaks = c(0,1,3,6,9,12,18,24,30,36,42,48), limits = c(0, 50)) +
  scale_color_manual(values = colors) +
  theme(legend.title = element_text(size=10, color = "black", face="bold"),
        legend.justification=c(1,0), 
        legend.position=c(0.95, 0.50),  
        legend.background = element_blank(),
        legend.key = element_blank(), plot.caption = element_text(hjust = 0))

Difference in the entry to the programme also drives the differences in individual characteristics of participants. These can be observed on a wide list of covariates.

2. Database and sample

Our data contain rich information on individual characteristics of these individuals reported at the start of the unemployment spell. These were complemented by information on the history of their previous employment as well as unemployment periods. Additionally, we construct a set of variables capturing the situation of their region or municipality, such as the average wage or unemployment rate in the region, but also the usual traveling time to the nearest regional COLSAF centre.

Table A1: List of covariates
Variable_label Variable_name
Male male
Age of the jobseeker age
Level of education -No education edulev1
Level of education -Primary edulev2
Level of education -Secondary edulev3
Level of education -Tertiary edulev4
Speaks foreign language aj
The caseworker identifies a barrier to instant placement barrier
Length of the previous employment (in months) dlzka_zamestnania
Field of education - dummies eduf_#
Was in registered employment 12 months before the current unemployment spell empl_before12_un
Was in registered employment 24 months before the current unemployment spell empl_before24_un
Was in registered employment 6 months before the current unemployment spell empl_before6_un
Documented termination of previous employment employed_before
Income from registered employment 12 months before the current unemployment spell inc_before12_un
Income from registered employment 18 months before the current unemployment spell inc_before18_un
Income from registered employment 24 months before the current unemployment spell inc_before24_un
Income from registered employment 6 months before the current unemployment spell inc_before6_un
Occupation of previous employment - ISCO 0 isco_1
Occupation of previous employment - ISCO 1 isco_2
Occupation of previous employment - ISCO 2 isco_3
Occupation of previous employment - ISCO 3 isco_4
Occupation of previous employment - ISCO 4 isco_5
Occupation of previous employment - ISCO 5 isco_6
Occupation of previous employment - ISCO 6 isco_7
Occupation of previous employment - ISCO 7 isco_8
Occupation of previous employment - ISCO 8 isco_9
Occupation of previous employment - ISCO 9 isco_10
Has kids under 10 years of age kids
Traveling time to the capital city - Bratislava (in minutes) min_BA
Travelling time to the local administrative centre (in minutes) min_kraj
Traveling time to the self-governing capital (in minutes) min_kraj
Travelling time to the local Labour Office (in minutes) min_urad
Traveling time to the nearest regional COLSAF office (in minutes) min_urad
Not a Slovak nationality notSK
Commands a computer pc
Regional Labour Office - dummies reg_office#
Sector of economic activity in previous employment - Agriculture sector1
Sector of economic activity in previous employment - Industry sector2
Sector of economic activity in previous employment - Private services sector3
Sector of economic activity in previous employment - Public services sector4
Marital status - single single
Length of the first unemployment spell (in days) spell1
Number of previous unemployment spells spells
Average unemployment rate in the region during 2008 un_rr2008
Has a driving licence vp
Average wage in the region during 2009 wage2009
Number of days in unemployment before January 1st 2011 zaradenie
Bratislava district kraj1
Trnava district kraj2
Trencin district kraj3
Nitra district kraj4
Zilina district kraj5
Banska Bystrica district kraj6
Presov district kraj7
Kosice district kraj8
Population of the municipality of permanent residence population
Share of roma population in the municipality of permanent residence roma_share
Share of roma population in the municipality over 5 percent roma5

Collinear covariates were dropped, by applying the condition of VIF<10, in a step-wise manner using a user written function: https://www.r-bloggers.com/collinearity-and-stepwise-vif-selection/
downloaded from: https://gist.githubusercontent.com/fawda123/4717702/raw/4878688f9539db4304033f1a8bc26dfd0e1e9e28/vif_fun.r After accounting for collinearity we end up with a list of 52 covariates.

Considering these attributes, participants differ substantially from the eligible non-participants, as well as between the programmes.

Table A2: Mean values of selected individuals´ characteristics by subgroups
Eligible Graduate practice Activation works Voluntary activation works
Age of the jobseeker 21.28 21.12 20.70 21.76
Speaks foreign language 0.82 0.96 0.34 0.90
The caseworker identifies a barrier to instant placement 0.36 0.37 0.53 0.39
Length of the previous employment (in months) 4.12 3.71 1.44 2.50
Level of education -No education 0.01 0.00 0.09 0.00
Level of education -Primary 0.11 0.01 0.41 0.04
Level of education -Secondary 0.62 0.67 0.17 0.59
Level of education -Tertiary 0.26 0.32 0.32 0.37
Was in registered employment 12 months before the current unemployment spell 0.26 0.21 0.04 0.19
Was in registered employment 24 months before the current unemployment spell 0.21 0.17 0.04 0.16
Was in registered employment 6 months before the current unemployment spell 0.28 0.23 0.04 0.21
Documented termination of previous employment 0.01 0.01 0.00 0.00
Income from registered employment 12 months before the current unemployment spell 80.32 47.13 10.80 45.91
Income from registered employment 24 months before the current unemployment spell 66.04 36.69 9.10 32.80
Income from registered employment 6 months before the current unemployment spell 94.05 55.81 9.24 56.73
Occupation of previous employment - ISCO 9 0.07 0.04 0.10 0.06
Occupation of previous employment - ISCO 1 0.00 0.00 0.00 0.00
Occupation of previous employment - ISCO 2 0.01 0.01 0.00 0.02
Occupation of previous employment - ISCO 3 0.03 0.03 0.00 0.05
Occupation of previous employment - ISCO 4 0.02 0.02 0.01 0.03
Occupation of previous employment - ISCO 5 0.06 0.07 0.01 0.06
Occupation of previous employment - ISCO 7 0.05 0.02 0.02 0.01
Occupation of previous employment - ISCO 8 0.04 0.02 0.02 0.02
Has kids under 10 years of age 0.05 0.02 0.13 0.04
Trnava district 0.09 0.11 0.01 0.12
Trencin district 0.10 0.10 0.01 0.06
Nitra district 0.12 0.14 0.04 0.12
Zilina district 0.13 0.14 0.01 0.06
Banska Bystrica district 0.08 0.08 0.13 0.10
Presov district 0.15 0.12 0.09 0.13
Kosice district 0.10 0.07 0.01 0.09
Male 0.57 0.36 0.58 0.30
Traveling time to the capital city - Bratislava (in minutes) 217.56 222.20 318.25 230.37
Travelling time to the local administrative centre (in minutes) 41.29 42.44 62.00 53.40
Traveling time to the self-governing capital (in minutes) 41.29 42.44 62.00 53.40
Traveling time to the nearest regional COLSAF office (in minutes) 11.98 10.81 17.40 12.89
Travelling time to the local Labour Office (in minutes) 11.98 10.81 17.40 12.89
Not a Slovak nationality 0.00 0.00 0.00 0.00
Commands a computer 0.41 0.54 0.10 0.51
Population of the municipality of permanent residence 16653.51 16929.07 4412.51 12969.39
Share of roma population in the municipality of permanent residence 0.11 0.07 0.43 0.12
Share of roma population in the municipality over 5 percent 0.36 0.32 0.89 0.49
Sector of economic activity in previous employment - Industry 0.05 0.03 0.03 0.03
Sector of economic activity in previous employment - Private services 0.02 0.01 0.02 0.01
Sector of economic activity in previous employment - Public services 0.11 0.10 0.03 0.12
Marital status - single 0.87 0.89 0.66 0.85
Length of the first unemployment spell (in days) 101.62 73.55 192.89 124.23
Number of previous unemployment spells 0.79 0.53 0.62 0.69
Average unemployment rate in the region during 2008 9.70 9.79 13.14 10.94
Population in the municipality of permanent residence under 4000 0.48 0.44 0.80 0.48
Has a driving licence 0.35 0.44 0.11 0.42
Average wage in the region during 2009 676.02 662.76 657.89 675.17
Number of days in unemployment before January 1st 2011 18650.33 18620.86 18089.31 18544.58
Table A2.1: Mean values of selected individuals´ characteristics by subgroups and period (quarter) of participation
Variable
Quarter 3
Quarter 4
Quarter 5
Quarter 6
Eligible Graduate practice Activation works Voluntary activation works Eligible Graduate practice Activation works Voluntary activation works Eligible Graduate practice Activation works Voluntary activation works Eligible Graduate practice Activation works Voluntary activation works
Age of the jobseeker 21.20 20.99 21.85 21.60 21.18 21.11 20.87 22.09 21.22 21.25 20.04 21.67 21.19 21.54 20.79 22.17
Speaks foreign language 0.77 0.96 0.31 0.92 0.75 0.95 0.29 0.96 0.72 0.93 0.31 0.92 0.70 0.94 0.27 0.92
The caseworker identifies a barrier to instant placement 0.38 0.38 0.53 0.38 0.39 0.38 0.54 0.39 0.38 0.41 0.52 0.39 0.38 0.40 0.53 0.37
Length of the previous employment (in months) 3.98 2.60 1.87 2.03 3.66 2.66 2.40 1.70 3.61 2.69 1.21 1.50 3.49 2.34 2.55 2.76
Level of education -No education 0.02 0.00 0.13 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.09 0.00
Level of education -Primary 0.14 0.01 0.49 0.03 0.16 0.01 0.50 0.01 0.18 0.02 0.45 0.04 0.20 0.02 0.42 0.02
Level of education -Secondary 0.60 0.76 0.15 0.58 0.58 0.80 0.24 0.62 0.57 0.79 0.15 0.64 0.56 0.80 0.14 0.54
Was in registered employment 12 months before the current unemployment spell 0.21 0.20 0.07 0.15 0.19 0.20 0.06 0.16 0.18 0.23 0.03 0.16 0.17 0.19 0.06 0.19
Was in registered employment 24 months before the current unemployment spell 0.18 0.18 0.18 0.16 0.17 0.17 0.09 0.17 0.16 0.18 0.04 0.14 0.14 0.13 0.07 0.15
Was in registered employment 6 months before the current unemployment spell 0.23 0.22 0.05 0.16 0.21 0.24 0.08 0.15 0.20 0.23 0.04 0.13 0.19 0.19 0.06 0.17
Documented termination of previous employment 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Income from registered employment 12 months before the current unemployment spell 63.74 49.82 15.13 36.11 56.51 50.77 17.12 37.54 53.25 50.30 8.07 27.65 49.00 45.38 15.13 42.92
Income from registered employment 24 months before the current unemployment spell 54.46 41.33 37.14 28.40 47.78 38.85 23.30 26.63 44.26 38.12 11.69 23.91 40.16 22.36 17.39 33.84
Income from registered employment 6 months before the current unemployment spell 70.51 55.98 1.48 35.93 63.09 60.08 14.21 28.39 59.61 52.77 6.71 25.51 55.57 45.67 11.21 35.79
Occupation of previous employment - ISCO 9 0.08 0.04 0.24 0.04 0.08 0.06 0.14 0.05 0.09 0.08 0.07 0.01 0.09 0.07 0.10 0.10
Occupation of previous employment - ISCO 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Occupation of previous employment - ISCO 2 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Occupation of previous employment - ISCO 3 0.02 0.03 0.00 0.03 0.02 0.03 0.00 0.04 0.02 0.03 0.00 0.03 0.02 0.01 0.00 0.05
Occupation of previous employment - ISCO 4 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.03 0.02 0.03 0.00 0.00 0.02 0.00 0.01 0.03
Occupation of previous employment - ISCO 5 0.06 0.07 0.04 0.08 0.06 0.08 0.00 0.07 0.06 0.06 0.01 0.07 0.05 0.07 0.02 0.03
Occupation of previous employment - ISCO 7 0.05 0.03 0.05 0.01 0.05 0.02 0.00 0.02 0.05 0.03 0.01 0.00 0.05 0.04 0.03 0.02
Occupation of previous employment - ISCO 8 0.04 0.03 0.04 0.01 0.04 0.04 0.01 0.02 0.04 0.04 0.01 0.02 0.04 0.03 0.01 0.00
Has kids under 10 years of age 0.06 0.02 0.29 0.01 0.06 0.03 0.09 0.03 0.07 0.02 0.12 0.06 0.07 0.03 0.16 0.05
Trnava district 0.07 0.10 0.04 0.09 0.06 0.09 0.03 0.11 0.06 0.06 0.01 0.10 0.06 0.12 0.01 0.15
Trencin district 0.09 0.09 0.00 0.06 0.08 0.11 0.05 0.04 0.08 0.10 0.00 0.02 0.07 0.10 0.01 0.05
Nitra district 0.11 0.18 0.04 0.14 0.11 0.17 0.03 0.14 0.11 0.16 0.06 0.15 0.10 0.13 0.04 0.05
Zilina district 0.12 0.13 0.00 0.03 0.11 0.13 0.04 0.07 0.11 0.14 0.01 0.04 0.10 0.13 0.01 0.07
Banska Bystrica district 0.09 0.08 0.18 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.12 0.12 0.09 0.12 0.12 0.15
Presov district 0.13 0.12 0.05 0.12 0.12 0.11 0.10 0.11 0.12 0.09 0.08 0.12 0.11 0.13 0.11 0.14
Kosice district 0.07 0.07 0.02 0.07 0.06 0.08 0.01 0.07 0.06 0.06 0.01 0.07 0.05 0.06 0.01 0.12
Male 0.57 0.42 0.67 0.24 0.57 0.45 0.55 0.23 0.58 0.44 0.53 0.27 0.59 0.48 0.57 0.31
Traveling time to the capital city - Bratislava (in minutes) 235.42 214.60 331.51 228.51 242.16 222.67 308.98 228.14 247.20 234.61 304.93 251.68 250.75 223.80 317.24 251.39
Travelling time to the local administrative centre (in minutes) 44.75 41.43 62.33 53.63 46.02 41.52 52.19 53.61 47.22 44.89 63.00 56.27 48.05 46.90 59.00 58.62
Traveling time to the self-governing capital (in minutes) 44.75 41.43 62.33 53.63 46.02 41.52 52.19 53.61 47.22 44.89 63.00 56.27 48.05 46.90 59.00 58.62
Traveling time to the nearest regional COLSAF office (in minutes) 12.74 11.50 16.53 11.29 13.07 11.93 18.73 11.26 13.39 13.05 18.09 16.42 13.68 13.09 16.34 13.42
Travelling time to the local Labour Office (in minutes) 12.74 11.50 16.53 11.29 13.07 11.93 18.73 11.26 13.39 13.05 18.09 16.42 13.68 13.09 16.34 13.42
Not a Slovak nationality 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Commands a computer 0.39 0.55 0.15 0.54 0.38 0.55 0.08 0.49 0.36 0.58 0.10 0.52 0.36 0.55 0.10 0.51
Population of the municipality of permanent residence 14772.85 16414.07 5021.35 14294.75 14055.84 18032.43 6094.12 13871.22 13304.94 14486.54 4418.54 7659.00 12812.45 15005.04 5364.76 14475.44
Share of roma population in the municipality of permanent residence 0.14 0.07 0.36 0.12 0.15 0.08 0.31 0.11 0.17 0.07 0.42 0.14 0.18 0.09 0.45 0.14
Sector of economic activity in previous employment - Industry 0.05 0.03 0.04 0.02 0.05 0.04 0.05 0.03 0.05 0.05 0.02 0.03 0.05 0.04 0.03 0.02
Sector of economic activity in previous employment - Private services 0.02 0.01 0.05 0.01 0.02 0.01 0.00 0.01 0.02 0.01 0.01 0.00 0.02 0.02 0.03 0.00
Sector of economic activity in previous employment - Public services 0.10 0.10 0.09 0.08 0.10 0.12 0.06 0.09 0.10 0.07 0.03 0.08 0.10 0.10 0.02 0.14
Marital status - single 0.84 0.90 0.58 0.87 0.83 0.90 0.76 0.78 0.82 0.90 0.67 0.85 0.82 0.92 0.64 0.80
Length of the first unemployment spell (in days) 113.88 70.60 501.98 100.82 119.98 75.38 353.09 115.77 127.45 94.93 164.08 136.60 130.39 52.84 233.09 159.02
Number of previous unemployment spells 0.70 0.53 1.98 0.55 0.69 0.55 0.96 0.57 0.69 0.56 0.62 0.64 0.68 0.46 0.66 0.66
Average unemployment rate in the region during 2008 10.35 9.72 13.33 11.17 10.58 9.52 13.30 10.62 10.77 10.00 12.97 10.96 10.90 9.91 13.11 12.10
Has a driving licence 0.35 0.45 0.05 0.43 0.35 0.43 0.06 0.33 0.34 0.41 0.07 0.46 0.34 0.42 0.10 0.44
Average wage in the region during 2009 666.67 665.63 643.02 679.90 663.96 668.27 657.63 670.42 661.90 655.49 668.97 692.27 660.84 665.70 655.11 660.17
Number of days in unemployment before January 1st 2011 18545.35 18559.05 18530.51 18515.68 18505.66 18494.32 18459.79 18482.95 18464.45 18425.96 18415.22 18443.66 18435.75 18252.41 18258.91 18280.39

The mean values reported above and the ATETs reported later in this appendix are counted based on the following samples. Please note that the samples of AW participants are limited in the early stages of the unemployment spell. In contrast, the VAW participants become less numerous in the sixth quarter of unemployment.

Table A2.2: Sample of participants by programme and the quarter of participation
###SampleTable
nPeriods<-6
SampleTable <- matrix(NA, nrow=nPeriods, ncol=5)
  for (k in seq(3,nPeriods)) {
                  SampleTable[k,1] <- paste("Quarter ",k, sep="")
                  SampleTable[k,2]<-sum(as.logical((aotp51==0)*(aotp52==0)*(aotp52a==0)*(Ydur>=k)))
                  SampleTable[k,3] <- sum(as.logical((aotp51==1)*(S51==k)))
                  SampleTable[k,4] <- sum(as.logical((aotp52==1)*(S52==k)))
                  SampleTable[k,5] <- sum(as.logical((aotp52a==1)*(S52a==k)))
                              }

kbl(SampleTable[c(3:6),] , col.names = c("Participation period (s)", "Eligible","GP", "AW", "VAW")) %>%
 kable_classic(full_width = F) %>%
  add_header_above(c("Sample size" = 5)) 
Sample size
Participation period (s) Eligible GP AW VAW
Quarter 3 108038 2348 55 201
Quarter 4 84228 758 78 148
Quarter 5 67096 428 473 98
Quarter 6 56807 252 387 59

3. Estiamtion of the treatment effects on the treated

In order to estimate unbiased treatment effects of participation in one of the three programmes of interest, we account for the different composition of programme participants driven by selection into the programme. Out of the full list of covariates available in our data, we have dropped collinear variables (correlation threshold 0.8) and concentrated dummy variables (concentration threshold 0.01 resp. 0.99).

Additionally, because of the difference in the usual start of the programme participation, we adopt a dynamic evaluation framework following the routine introduced in Vikström (2017). We discretize the continuous time by quarter-of-year increments and change the risk set in every point in time. We found this to be a practical choice balancing the precision of the estimated probabilities \(\hat p_s(X_{i,s}) = \textrm{Pr}(S=s|X_{i,s},S \geq s, \overline{Y}_{s-1}=0)\) and loosing the precision in the measurement of the outcome and treatment timing (by month). The pool of not-yet-treated participants that are used to recover the fundamentally unobserved counterfactual probability of never being treated is shrinking in every time period. The indicator functions \(\mathbb{1}(\overline{Y}_{k-1,i}=0)\) in the expression of \(\widehat{ATET_t(s)}\) on the top of p10 ensures that only unemployed job-seekers enter the sums in both the numerator and the denominator.

\[ \widehat{ATET_t(s)}= - \left(\underbrace{\prod_{k=s}^{t}\left[ 1 - \frac{\sum_{i=1}^{N} Y_{k,i}\mathbb{1}(\overline{Y}_{k-1,i}=0)\cdot \mathbb{1}(S_i=s)} {\sum_{i=1}^{N} \mathbb{1}(\overline{Y}_{k-1,i}=0) \cdot \mathbb{1}(S_i=s)}\right]}_{\substack{\text{Estimator of observable probability} \\ \text{of not finding a job until $t$ if treated in $s$}}} \right. - \left. \underbrace{\prod_{k=s}^{t} \left[ 1 - \frac{\sum_{i=1}^{N} \hat{\omega}_i(s,k)\cdot Y_{k,i}\cdot \mathbb{1}(\overline{Y}_{k-1,i}=0)\cdot \mathbb{1}(S_i>k) }{\sum_{i=1}^{N}\hat{\omega}_i(s,k)\cdot \mathbb{1}(\overline{Y}_{k-1,i}=0) \cdot \mathbb{1}(S_i>k)}\right]}_{\substack{\text{Estimator of counterfactual probability} \\ \text{of not finding a job until $t$ if never treated}}}\right)\]

For an illustration, consider a JS who enters the programme in the third quarter (\(s=3\)) after he or she becomes unemployed. We are interested in comparing the probability of this person finding a job in the fifth quarter (\(t=5\)) after the beginning of the unemployment period with that of another treated person who would, counterfactually, never enter the programme. While we observe the first person, identifying assumptions must be used to recover the probability of finding a job for the second person. We provide a graphical illustration of the approach in the appendix.

Source: Authors
Source: Authors

This scheme illustrates the quantity of interest the \(ATET_{t}(s),\) for \(s=3\) and \(t=5:\) \[ ATET_{5}(3) = -\big( \textrm{Pr}(\overline{Y}_5(3)=0|S=3, \overline{Y}_{2}(3)=0) - \textrm{Pr}(\overline{Y}_5(0)=0|S=3, \overline{Y}_{2}(3)=0)\big).\]

Above the time axis we use the subset of people who are unemployed by that time (\(\bar{Y}_2=0\)) and treated in period (\(S=3\)). Among these people 70% remain unemployed. In between periods 3 and 4, 20% find a job and then in between periods 4 and 5, further 25% find a job. These proportions are used to estimate \(\textrm{Pr}(\overline{Y}_5(3)=0|S=3, \overline{Y}_{2}(3)=0)\). Below the time axis the counter-factual quantity \(\textrm{Pr}(\overline{Y}_5(0)=0|S=3, \overline{Y}_{2}(3)=0)\) is estimated by sequentially using the sample of not-yet-treated individuals (\(S>3\)) and by re-weighting them via \(\hat \omega,\) so that they are comparable to the \(S=3\) group.

Under this framework, the definition of the control group shifts in time after the start of the unemployment spell.

The estimator applied is based on inverse probability weighting estimating a probit model of the propensity to participate in the particular programme of interest. For this purpose we use the R-function [dynamicALMP.R] (http://www.lmevidence.sav.sk/data_uploads/dynamicALMP.R) implementing the estimator introduced by Vikström (2017) followed by a R-function [dynamicALMPbalance.R] (http://www.lmevidence.sav.sk/data_uploads/dynamicALMPbalance.R) developed to assess pre and post-weighting balance of the groups of participants and the quasi-control group. Following the notation of Vikström (2017) the “dynamicALMP.R” function takes the following arguments:

In our case periods are quarters, with time measuring the duration of unemployment (Ydur) as well as th time elapsed between the start of the unemployment spell and the start of participation (S) measured in quarters (See the following chunk of R-code displaying the data preparation and estimation). We have aggregated our periods from months to quarters to acquire more observations in each or the periods and thus narrowing the confidence intervals of our estimates. In the following example estimation we only estimate the ATETs for participation taking place in the third quarter of the unemployment spell (s=3). Please explore the following chunk of commented R-code to follow our steps in one example estimation.

3.1 Balance improvement achieved by weighting

The following graphs display the post-weighting balance improvement of the groups of participants and the quasi-control group on the observed characteristics of individuals.

#To save time we Load the estimation results acquired by the previous chunk (instead of running the chunk)
load("D:/CloudStation/APVV/LM_evidence/DynamicALMP/DynamicALMP/DynamicALMP.RData")

balPlot51<-balance51$GraphX+balance51$GraphP+ plot_annotation(
  "Graph A3.1: Balance improvement achieved by weighting - GP participants", 
  caption = "Source: Authors’ calculations using the COLSAF database")

balPlot51

#annotate_figure(balPlot51, 
#               top = text_grob("Graph A3.1: Balance improvement achieved by weighting - GP participants", color = "black", face = "bold", size = 14),
#               bottom = text_grob("Source: Authors’ calculations using the COLSAF database", color = "black", hjust = 1, x = 1, face = "italic", size = 10))

balPlot52<-balance52$GraphX+balance52$GraphP + plot_annotation(
  "Graph A3.2: Balance improvement achieved by weighting - AW participants", 
  caption = "Source: Authors’ calculations using the COLSAF database")

balPlot52

#annotate_figure(balPlot52, 
#               top = text_grob("Graph A3.2: Balance improvement achieved by weighting - AW participants", color = "black", face = "bold", size = 14),
#               bottom = text_grob("Source: Authors’ calculations using the COLSAF database", color = "black", hjust = 1, x = 1, face = "italic", size = 10))

balPlot52a<-balance52a$GraphX + balance52a$GraphP + plot_annotation(
  "Graph A3.3: Balance improvement achieved by weighting - VAW participants", 
  caption = "Source: Authors’ calculations using the COLSAF database")

balPlot52a

#annotate_figure(balPlot52a, 
#               top = text_grob("Graph A3.3: Balance improvement achieved by weighting - VAW participants", color = "black", face = "bold", size = 14),
#               bottom = text_grob("Source: Authors’ calculations using the COLSAF database", color = "black", hjust = 1, x = 1, face = "italic", size = 10))

3.2 ATETs reported for the extended period participation

In this section we report the ATETs for the quarters reported in the paper (s=3,4,5) plus one succeeding period (s=6) allowed by the sample. Please note, that in the case of the second quarter (4th to 6th months in unemployment), the second identifying assumption of (No anticipation assumption) is hard to justify, because the eligibility for the unemployment benefit spans through the first six months of unemployment.

Note: Outcomes are measured based on presence in or absence from the registry of unemployed persons. Ninety-five percent confidence intervals are acquired based on 500 bootstraps. The intervals are bordered by the 95th The horizontal axes show the number of quarters since the start of the programme (t-s).

3.3 Heterogeneity of estimated ATETs by sub-groups of interest

The following tables display the differences in the ATETs when estimated to subgroups splitting the sample based on:

  • Gender
  • Level of education (primary vs. higher education = upper secondary and above)
  • Age (aged over and under 20 years)
  • Size of the settlement of the place of residence (village vs. town = over and under 4000 inhabitants)
  • The presence of Roma population in the place of residence (over and under 5 percent of the total population)
Table A3: ATETs estimated for selected sub-groups of interest
Quarter after the start of the participation
Group Programme Quarter of participation 1 2 3 4 5 6 7 8 9 10 N
Gender
Male GP 3 ATET -0.089* 0.004 0.025 0.043* 0.046* 0.046* 0.045* 0.05* 0.048* 0.045* 986
Male GP 3 s.e. (0.014) (0.014) (0.015) (0.013) (0.013) (0.011) (0.01) (0.009) (0.01) (0.009)
Male GP 4 ATET -0.069* 0.012 0.017 0.033* 0.046* 0.049* 0.071* 0.07* 0.071* 0.064* 339
Male GP 4 s.e. (0.022) (0.024) (0.025) (0.023) (0.023) (0.021) (0.021) (0.019) (0.018) (0.016)
Male GP 5 ATET -0.074* -0.016 0.028 0.024 0.034 0.052* 0.059* 0.106* 0.097* 0.073* 189
Male GP 5 s.e. (0.029) (0.035) (0.032) (0.035) (0.035) (0.034) (0.033) (0.027) (0.025) (0.025)
Male AW 3 ATET 0.111* 0.142* 0.086 0.03 0.046 0.059 0.06 0.098 0.104* 0.095* 37
Male AW 3 s.e. (0.064) (0.066) (0.069) (0.074) (0.07) (0.067) (0.064) (0.065) (0.059) (0.055)
Male AW 4 ATET 0.103* 0.118* 0.132* 0.106* 0.072 0.066 0.025 -0.01 -0.021 0.022 43
Male AW 4 s.e. (0.059) (0.068) (0.062) (0.062) (0.063) (0.066) (0.064) (0.064) (0.064) (0.063)
Male AW 5 ATET 0.048* 0.051* 0.037 0.047 0.036 0.043 0.038 0.028 0.022 0.012 250
Male AW 5 s.e. (0.025) (0.029) (0.031) (0.032) (0.032) (0.03) (0.031) (0.031) (0.03) (0.029)
Male VAW 3 ATET 0.066 0.116* 0.106* 0.157* 0.129* 0.118* 0.099* 0.099* 0.09* 0.113* 48
Male VAW 3 s.e. (0.067) (0.062) (0.058) (0.045) (0.044) (0.04) (0.04) (0.037) (0.036) (0.035)
Male VAW 4 ATET -0.076 0.135* 0.133 0.14* 0.148* 0.187* 0.204* 0.165* 0.143* 0.124* 34
Male VAW 4 s.e. (0.069) (0.087) (0.088) (0.081) (0.069) (0.064) (0.054) (0.049) (0.05) (0.049)
Male VAW 5 ATET -0.015 0.094 0.167* 0.14* 0.121 0.169* 0.154* 0.126* 0.133 0.11 26
Male VAW 5 s.e. (0.095) (0.093) (0.103) (0.098) (0.091) (0.073) (0.068) (0.07) (0.066) (0.067)
Female GP 3 ATET -0.121* -0.035* -0.015 0.011 0.015 0.026* 0.021* 0.024* 0.019* 0.021* 1362
Female GP 3 s.e. (0.011) (0.01) (0.01) (0.011) (0.01) (0.009) (0.009) (0.008) (0.008) (0.007)
Female GP 4 ATET -0.145* -0.078* -0.028 -0.015 0 -0.011 -0.011 0.006 0.013 0.002 419
Female GP 4 s.e. (0.016) (0.021) (0.02) (0.02) (0.02) (0.021) (0.019) (0.017) (0.016) (0.016)
Female GP 5 ATET -0.181* -0.054* -0.013 0.007 0.007 0.023 0.014 0.012 0.025 0.018 239
Female GP 5 s.e. (0.02) (0.028) (0.028) (0.026) (0.026) (0.026) (0.025) (0.025) (0.024) (0.024)
Female AW 3 ATET 0.052 0.015 0.031 0.077 0.061 0.042 0.077 0.134* 0.097 0.056 18
Female AW 3 s.e. (0.084) (0.089) (0.096) (0.11) (0.114) (0.113) (0.098) (0.08) (0.078) (0.078)
Female AW 4 ATET -0.066 -0.057 -0.055 0.019 0.038 0.056 0.045 0.028 0.022 0.019 35
Female AW 4 s.e. (0.054) (0.064) (0.072) (0.08) (0.073) (0.068) (0.068) (0.07) (0.067) (0.07)
Female AW 5 ATET -0.062* -0.034 -0.001 -0.036 -0.034 -0.018 0.005 0.025 0.04 0.032 223
Female AW 5 s.e. (0.022) (0.03) (0.031) (0.031) (0.029) (0.03) (0.029) (0.027) (0.025) (0.026)
Female VAW 3 ATET -0.067* 0.15* 0.174* 0.173* 0.15* 0.132* 0.119* 0.114* 0.114* 0.094* 153
Female VAW 3 s.e. (0.038) (0.03) (0.028) (0.025) (0.025) (0.024) (0.022) (0.02) (0.017) (0.017)
Female VAW 4 ATET -0.09* 0.019 0.075* 0.089* 0.109* 0.109* 0.114* 0.106* 0.097* 0.091* 114
Female VAW 4 s.e. (0.041) (0.045) (0.045) (0.041) (0.034) (0.031) (0.028) (0.026) (0.025) (0.023)
Female VAW 5 ATET -0.169* -0.105* -0.023 -0.032 -0.006 0.045 0.042 0.089 0.058 0.06 72
Female VAW 5 s.e. (0.044) (0.052) (0.056) (0.054) (0.059) (0.052) (0.051) (0.044) (0.045) (0.043)
Age
Over 20 GP 3 ATET -0.127* -0.045* -0.022 0.002 0.007 0.024* 0.022* 0.024* 0.024* 0.023* 1205
Over 20 GP 3 s.e. (0.012) (0.015) (0.015) (0.013) (0.013) (0.012) (0.011) (0.009) (0.009) (0.008)
Over 20 GP 4 ATET -0.111* -0.051* -0.024 -0.005 0.008 0.009 0.012 0.031* 0.04* 0.036* 422
Over 20 GP 4 s.e. (0.02) (0.021) (0.024) (0.024) (0.022) (0.019) (0.018) (0.016) (0.015) (0.015)
Over 20 GP 5 ATET -0.11* -0.001 0.036 0.054* 0.046* 0.066* 0.059* 0.063* 0.064* 0.047* 265
Over 20 GP 5 s.e. (0.023) (0.027) (0.027) (0.027) (0.026) (0.022) (0.022) (0.022) (0.019) (0.019)
Over 20 AW 3 ATET 0.1 0.112* 0.062 0.058 0.074 0.081 0.087 0.134* 0.119* 0.087 34
Over 20 AW 3 s.e. (0.068) (0.064) (0.07) (0.073) (0.074) (0.068) (0.065) (0.057) (0.058) (0.059)
Over 20 AW 4 ATET 0.09* 0.082 0.098 0.094 0.075 0.068 0.029 0.011 0.015 0.04 44
Over 20 AW 4 s.e. (0.063) (0.064) (0.065) (0.062) (0.059) (0.065) (0.064) (0.063) (0.061) (0.054)
Over 20 AW 5 ATET -0.005 -0.01 -0.003 -0.022 -0.025 -0.014 -0.002 -0.007 0.005 0 201
Over 20 AW 5 s.e. (0.023) (0.027) (0.028) (0.029) (0.03) (0.029) (0.03) (0.03) (0.029) (0.028)
Over 20 VAW 3 ATET -0.025 0.133* 0.158* 0.159* 0.121* 0.106* 0.104* 0.096* 0.088* 0.088* 120
Over 20 VAW 3 s.e. (0.038) (0.04) (0.042) (0.039) (0.036) (0.032) (0.026) (0.025) (0.024) (0.021)
Over 20 VAW 4 ATET -0.124* 0.003 0.063 0.092* 0.092* 0.102* 0.117* 0.11* 0.101* 0.099* 106
Over 20 VAW 4 s.e. (0.044) (0.049) (0.047) (0.043) (0.039) (0.036) (0.03) (0.027) (0.025) (0.022)
Over 20 VAW 5 ATET -0.089* -0.024 0.056 0.057 0.059 0.106* 0.075 0.115* 0.086* 0.065* 62
Over 20 VAW 5 s.e. (0.049) (0.051) (0.054) (0.053) (0.052) (0.05) (0.049) (0.037) (0.038) (0.038)
20 and younger GP 3 ATET -0.09* 0.008 0.014 0.03* 0.028* 0.025* 0.021* 0.027* 0.022* 0.025* 1143
20 and younger GP 3 s.e. (0.014) (0.016) (0.014) (0.013) (0.013) (0.013) (0.011) (0.01) (0.009) (0.009)
20 and younger GP 4 ATET -0.108* -0.039 -0.007 -0.003 0.015 0.001 0.017 0.011 0.014 0.003 336
20 and younger GP 4 s.e. (0.02) (0.024) (0.022) (0.021) (0.021) (0.021) (0.019) (0.018) (0.016) (0.016)
20 and younger GP 5 ATET -0.183* -0.117* -0.071* -0.075* -0.051 -0.044 -0.036 0.005 0.022 0.009 163
20 and younger GP 5 s.e. (0.027) (0.039) (0.039) (0.039) (0.039) (0.037) (0.032) (0.03) (0.026) (0.025)
20 and younger AW 3 ATET 0.045 0.055 0.058 0.036 0.025 0.01 0.037 0.08 0.078 0.086 21
20 and younger AW 3 s.e. (0.089) (0.095) (0.084) (0.091) (0.087) (0.089) (0.092) (0.089) (0.083) (0.076)
20 and younger AW 4 ATET -0.066 -0.027 -0.027 0.019 0.013 0.044 0.027 -0.009 -0.033 -0.015 34
20 and younger AW 4 s.e. (0.062) (0.078) (0.076) (0.079) (0.077) (0.078) (0.078) (0.077) (0.077) (0.071)
20 and younger AW 5 ATET 0.006 0.032 0.047* 0.041 0.035 0.051 0.054* 0.064* 0.062* 0.046* 272
20 and younger AW 5 s.e. (0.018) (0.022) (0.029) (0.029) (0.031) (0.033) (0.034) (0.035) (0.035) (0.032)
20 and younger VAW 3 ATET -0.045 0.15* 0.144* 0.175* 0.163* 0.144* 0.114* 0.116* 0.116* 0.097* 81
20 and younger VAW 3 s.e. (0.052) (0.05) (0.046) (0.039) (0.033) (0.031) (0.032) (0.031) (0.027) (0.027)
20 and younger VAW 4 ATET -0.003 0.089 0.103 0.092 0.157* 0.161* 0.148* 0.117* 0.097* 0.074 42
20 and younger VAW 4 s.e. (0.074) (0.073) (0.069) (0.072) (0.056) (0.051) (0.047) (0.047) (0.046) (0.046)
20 and younger VAW 5 ATET -0.16* -0.072 -0.021 -0.055 -0.023 0.033 0.066 0.06 0.047 0.077 36
20 and younger VAW 5 s.e. (0.051) (0.068) (0.082) (0.078) (0.082) (0.076) (0.065) (0.063) (0.058) (0.051)
Education level
Primary GP 3 ATET -0.089 0.031 0.066 0.122 0.066 0.08 0.104 0.143* 0.175* 0.174* 29
Primary GP 3 s.e. (0.068) (0.085) (0.078) (0.07) (0.069) (0.069) (0.072) (0.067) (0.048) (0.041)
Primary GP 4 ATET -0.054 0.021 0.112 0.115 0.046 0 -0.031 0.031 -0.026 0.026 9
Primary GP 4 s.e. (0.149) (0.161) (0.178) (0.155) (0.15) (0.148) (0.149) (0.138) (0.116) (0.103)
Primary GP 5 ATET -0.019 0.014 0.052 -0.015 0.027 0.092 0.18 0.145 0.118 0.199 9
Primary GP 5 s.e. (0.202) (0.207) (0.24) (0.227) (0.247) (0.243) (0.224) (0.225) (0.226) (0.178)
Primary AW 3 ATET 0.068 0.121 0.075 0.026 0.016 0.027 0.052 0.069 0.078 0.07 34
Primary AW 3 s.e. (0.078) (0.083) (0.086) (0.085) (0.083) (0.076) (0.074) (0.069) (0.067) (0.061)
Primary AW 4 ATET 0.041 0.055 0.036 0.021 0.03 0.041 0.018 -0.024 -0.039 -0.025 40
Primary AW 4 s.e. (0.055) (0.067) (0.069) (0.069) (0.066) (0.062) (0.064) (0.065) (0.066) (0.067)
Primary AW 5 ATET 0.041* 0.045* 0.041* 0.02 0.009 0.005 -0.005 0.009 0.009 -0.004 244
Primary AW 5 s.e. (0.022) (0.025) (0.025) (0.026) (0.027) (0.027) (0.027) (0.031) (0.03) (0.029)
Primary VAW 3 ATET -0.149* -0.05 -0.103 -0.161 -0.077 -0.135 -0.16 -0.206 -0.23 0.07 6
Primary VAW 3 s.e. (0.097) (0.202) (0.19) (0.193) (0.211) (0.218) (0.21) (0.195) (0.191) (0.194)
Primary VAW 4 ATET -0.229* 0.387 0.119 -0.004 -0.06 0.431* NA NA NA NA 2
Primary VAW 4 s.e. (0.153) (0.391) (0.317) (0.347) (0.335) (0.238) (NA) (NA) (NA) (NA)
Primary VAW 5 ATET 0.112 0.274 0.043 -0.001 -0.036 -0.069 -0.112 -0.15 -0.256 -0.301 4
Primary VAW 5 s.e. (0.252) (0.259) (0.274) (0.272) (0.267) (0.265) (0.277) (0.276) (0.232) (0.225)
Secondary GP 3 ATET -0.116* -0.027* -0.003 0.021* 0.03* 0.035* 0.031* 0.036* 0.032* 0.034* 1776
Secondary GP 3 s.e. (0.009) (0.011) (0.011) (0.01) (0.009) (0.009) (0.009) (0.008) (0.007) (0.007)
Secondary GP 4 ATET -0.111* -0.047* -0.014 0.002 0.022 0.02 0.033* 0.035* 0.039* 0.026* 605
Secondary GP 4 s.e. (0.015) (0.016) (0.017) (0.017) (0.017) (0.016) (0.015) (0.014) (0.012) (0.011)
Secondary GP 5 ATET -0.132* -0.039* -0.007 0.001 0.007 0.025 0.025 0.049* 0.06* 0.043* 340
Secondary GP 5 s.e. (0.021) (0.024) (0.025) (0.025) (0.026) (0.023) (0.023) (0.021) (0.019) (0.019)
Secondary AW 3 ATET 0.268* 0.191* 0.116 0.113 0.056 0.082 0.107 0.142 0.109 0.085 8
Secondary AW 3 s.e. (0.145) (0.139) (0.138) (0.124) (0.116) (0.118) (0.107) (0.099) (0.095) (0.094)
Secondary AW 4 ATET -0.121 -0.135 -0.12 -0.062 -0.069 -0.111 -0.144* -0.142 -0.119 -0.05 19
Secondary AW 4 s.e. (0.084) (0.103) (0.102) (0.099) (0.099) (0.095) (0.095) (0.107) (0.101) (0.089)
Secondary AW 5 ATET -0.062 -0.072 -0.102* -0.112* -0.121* -0.112* -0.046 -0.064 -0.037 -0.046 73
Secondary AW 5 s.e. (0.04) (0.051) (0.057) (0.058) (0.064) (0.061) (0.053) (0.053) (0.046) (0.045)
Secondary VAW 3 ATET -0.046 0.121* 0.135* 0.145* 0.129* 0.111* 0.107* 0.117* 0.108* 0.094* 116
Secondary VAW 3 s.e. (0.034) (0.037) (0.039) (0.036) (0.033) (0.03) (0.03) (0.025) (0.022) (0.021)
Secondary VAW 4 ATET -0.052 0.027 0.073 0.092* 0.12* 0.106* 0.109* 0.085* 0.081* 0.069* 92
Secondary VAW 4 s.e. (0.042) (0.05) (0.055) (0.05) (0.044) (0.041) (0.039) (0.037) (0.034) (0.032)
Secondary VAW 5 ATET -0.191* -0.071 -0.023 -0.018 0.032 0.09* 0.091* 0.087* 0.074 0.083* 63
Secondary VAW 5 s.e. (0.039) (0.061) (0.06) (0.058) (0.053) (0.046) (0.043) (0.039) (0.04) (0.037)
Tertiary GP 3 ATET -0.096* -0.01 0.006 0.023 0.02 0.023* 0.019 0.015 0.011 0.006 543
Tertiary GP 3 s.e. (0.017) (0.018) (0.018) (0.016) (0.016) (0.015) (0.014) (0.013) (0.012) (0.012)
Tertiary GP 4 ATET -0.118* -0.015 0.008 0.017 0.017 0.01 0.014 0.036 0.05* 0.045 144
Tertiary GP 4 s.e. (0.031) (0.038) (0.039) (0.036) (0.034) (0.033) (0.033) (0.032) (0.029) (0.027)
Tertiary GP 5 ATET -0.147* -0.026 0.05 0.054 0.045 0.058 0.045 0.045 0.023 0.003 79
Tertiary GP 5 s.e. (0.046) (0.055) (0.061) (0.054) (0.047) (0.045) (0.041) (0.04) (0.04) (0.04)
Tertiary AW 3 ATET -0.047 -0.086 -0.055 -0.013 0.13 0.091 0.034 0.132 0.087 0.059 13
Tertiary AW 3 s.e. (0.121) (0.129) (0.145) (0.154) (0.134) (0.128) (0.136) (0.107) (0.095) (0.091)
Tertiary AW 4 ATET 0.122 0.141 0.19* 0.248* 0.195* 0.236* 0.193* 0.162* 0.135* 0.146* 19
Tertiary AW 4 s.e. (0.1) (0.098) (0.093) (0.083) (0.082) (0.073) (0.074) (0.072) (0.073) (0.068)
Tertiary AW 5 ATET -0.027 -0.003 0.038 0.03 0.038 0.073* 0.082* 0.083* 0.078* 0.069* 156
Tertiary AW 5 s.e. (0.031) (0.035) (0.035) (0.037) (0.037) (0.038) (0.033) (0.031) (0.031) (0.03)
Tertiary VAW 3 ATET 0.001 0.187* 0.207* 0.228* 0.186* 0.175* 0.149* 0.129* 0.13* 0.112* 79
Tertiary VAW 3 s.e. (0.047) (0.043) (0.036) (0.03) (0.031) (0.028) (0.029) (0.03) (0.024) (0.027)
Tertiary VAW 4 ATET -0.17* 0.009 0.058 0.086 0.086* 0.123* 0.139* 0.143* 0.12* 0.122* 54
Tertiary VAW 4 s.e. (0.048) (0.06) (0.055) (0.051) (0.05) (0.043) (0.036) (0.029) (0.029) (0.027)
Tertiary VAW 5 ATET -0.032 -0.052 0.072 0.041 -0.009 0.045 0.039 0.12* 0.089 0.064 31
Tertiary VAW 5 s.e. (0.085) (0.094) (0.089) (0.091) (0.093) (0.084) (0.086) (0.06) (0.057) (0.055)
Size of settlement
Village GP 3 ATET -0.082* -0.017 0.014 0.047* 0.045* 0.041* 0.029* 0.028* 0.024* 0.023* 1091
Village GP 3 s.e. (0.012) (0.013) (0.014) (0.014) (0.013) (0.013) (0.013) (0.012) (0.011) (0.01)
Village GP 4 ATET -0.11* -0.017 0.013 0.025 0.049* 0.05* 0.055* 0.064* 0.062* 0.051* 342
Village GP 4 s.e. (0.02) (0.027) (0.026) (0.026) (0.024) (0.022) (0.02) (0.019) (0.019) (0.018)
Village GP 5 ATET -0.152* -0.057* 0.015 0.032 0.038 0.063* 0.059* 0.068* 0.077* 0.062* 206
Village GP 5 s.e. (0.024) (0.032) (0.036) (0.029) (0.03) (0.028) (0.026) (0.024) (0.022) (0.022)
Village AW 3 ATET 0.112* 0.117* 0.075 0.048 0.058 0.033 0.062 0.12* 0.119* 0.102* 41
Village AW 3 s.e. (0.058) (0.062) (0.062) (0.064) (0.055) (0.056) (0.055) (0.049) (0.049) (0.048)
Village AW 4 ATET 0.021 0.038 0.065 0.052 0.036 0.051 0.026 -0.011 -0.023 0.023 52
Village AW 4 s.e. (0.057) (0.058) (0.063) (0.061) (0.06) (0.062) (0.062) (0.061) (0.059) (0.055)
Village AW 5 ATET -0.012 0.006 0.012 0.002 -0.008 -0.001 0.014 0.018 0.019 0.007 375
Village AW 5 s.e. (0.017) (0.019) (0.02) (0.022) (0.021) (0.022) (0.023) (0.022) (0.022) (0.021)
Village VAW 3 ATET -0.012 0.105* 0.147* 0.156* 0.143* 0.128* 0.112* 0.099* 0.095* 0.1* 94
Village VAW 3 s.e. (0.044) (0.044) (0.041) (0.038) (0.034) (0.035) (0.033) (0.031) (0.029) (0.029)
Village VAW 4 ATET -0.133* -0.012 -0.008 0.024 0.112* 0.122* 0.129* 0.112* 0.102* 0.08* 62
Village VAW 4 s.e. (0.049) (0.061) (0.064) (0.059) (0.048) (0.049) (0.042) (0.04) (0.04) (0.04)
Village VAW 5 ATET -0.144* -0.045 -0.004 -0.013 -0.018 0.026 0.017 0.07 0.054 0.052 51
Village VAW 5 s.e. (0.044) (0.064) (0.071) (0.069) (0.071) (0.064) (0.062) (0.051) (0.05) (0.043)
Town GP 3 ATET -0.132* -0.024* -0.009 0.004 0.016 0.029* 0.032* 0.039* 0.036* 0.037* 1257
Town GP 3 s.e. (0.012) (0.013) (0.012) (0.012) (0.011) (0.011) (0.01) (0.009) (0.008) (0.008)
Town GP 4 ATET -0.109* -0.057* -0.025 -0.004 0.003 -0.005 0.008 0.015 0.025 0.016 416
Town GP 4 s.e. (0.02) (0.024) (0.022) (0.021) (0.022) (0.022) (0.019) (0.017) (0.016) (0.015)
Town GP 5 ATET -0.121* -0.021 0.001 0.004 0.008 0.013 0.012 0.038 0.039 0.023 222
Town GP 5 s.e. (0.025) (0.031) (0.034) (0.034) (0.033) (0.032) (0.03) (0.027) (0.024) (0.025)
Town AW 3 ATET 0.052 0.065 0.031 0.062 0.065 0.15 0.111 0.125 0.071 0.052 14
Town AW 3 s.e. (0.102) (0.112) (0.108) (0.106) (0.102) (0.089) (0.093) (0.091) (0.088) (0.089)
Town AW 4 ATET 0.059 0.054 0.037 0.109 0.104 0.087 0.049 0.04 0.037 0.009 26
Town AW 4 s.e. (0.077) (0.083) (0.078) (0.076) (0.078) (0.071) (0.071) (0.069) (0.075) (0.075)
Town AW 5 ATET 0.047 0.036 0.049 0.033 0.047 0.074* 0.06 0.065* 0.08* 0.08* 98
Town AW 5 s.e. (0.041) (0.042) (0.045) (0.043) (0.043) (0.042) (0.042) (0.041) (0.039) (0.037)
Town VAW 3 ATET -0.043 0.174* 0.161* 0.178* 0.142* 0.126* 0.117* 0.12* 0.113* 0.095* 107
Town VAW 3 s.e. (0.044) (0.036) (0.034) (0.033) (0.033) (0.031) (0.026) (0.023) (0.02) (0.019)
Town VAW 4 ATET -0.057 0.078 0.146* 0.145* 0.117* 0.123* 0.132* 0.121* 0.107* 0.109* 86
Town VAW 4 s.e. (0.051) (0.053) (0.044) (0.043) (0.04) (0.034) (0.033) (0.029) (0.029) (0.027)
Town VAW 5 ATET -0.097 -0.035 0.078 0.07 0.096 0.145* 0.143* 0.127* 0.102* 0.093* 47
Town VAW 5 s.e. (0.066) (0.076) (0.073) (0.072) (0.064) (0.056) (0.052) (0.049) (0.048) (0.043)
Roma population in the place of residence
With Roma population GP 3 ATET -0.112* -0.021* 0.004 0.025* 0.029* 0.041* 0.038* 0.046* 0.039* 0.039* 724
With Roma population GP 3 s.e. (0.011) (0.012) (0.013) (0.011) (0.011) (0.01) (0.009) (0.008) (0.008) (0.007)
With Roma population GP 4 ATET -0.118* -0.058* -0.012 0.026 0.036 0.028 0.061* 0.063* 0.055* 0.043* 241
With Roma population GP 4 s.e. (0.027) (0.033) (0.032) (0.031) (0.029) (0.027) (0.025) (0.023) (0.022) (0.023)
With Roma population GP 5 ATET -0.113* -0.035 0 -0.001 0.003 0.01 0.016 0.04 0.059* 0.046* 139
With Roma population GP 5 s.e. (0.026) (0.031) (0.034) (0.034) (0.035) (0.033) (0.031) (0.027) (0.027) (0.026)
With Roma population AW 3 ATET 0.1* 0.103 0.076 0.066 0.079 0.054 0.055 0.103* 0.095* 0.08* 46
With Roma population AW 3 s.e. (0.057) (0.064) (0.063) (0.063) (0.061) (0.062) (0.058) (0.055) (0.053) (0.048)
With Roma population AW 4 ATET -0.019 0.002 0.015 0.054 0.042 0.049 0.009 -0.02 -0.024 -0.016 61
With Roma population AW 4 s.e. (0.046) (0.055) (0.055) (0.058) (0.05) (0.053) (0.054) (0.052) (0.049) (0.051)
With Roma population AW 5 ATET 0.005 0.02 0.027 0.018 0.018 0.034* 0.041* 0.048* 0.052* 0.038* 422
With Roma population AW 5 s.e. (0.015) (0.017) (0.019) (0.019) (0.018) (0.018) (0.017) (0.02) (0.019) (0.019)
With Roma population VAW 3 ATET -0.025 0.148* 0.144* 0.174* 0.147* 0.13* 0.112* 0.118* 0.115* 0.112* 101
With Roma population VAW 3 s.e. (0.035) (0.034) (0.032) (0.029) (0.027) (0.026) (0.025) (0.02) (0.019) (0.017)
With Roma population VAW 4 ATET -0.082 0.078 0.131* 0.114* 0.122* 0.13* 0.154* 0.135* 0.122* 0.123* 77
With Roma population VAW 4 s.e. (0.056) (0.061) (0.061) (0.056) (0.05) (0.043) (0.035) (0.034) (0.034) (0.03)
With Roma population VAW 5 ATET -0.145* -0.035 0.045 0.054 0.076 0.125* 0.107* 0.142* 0.115* 0.102* 55
With Roma population VAW 5 s.e. (0.049) (0.065) (0.059) (0.061) (0.059) (0.055) (0.052) (0.04) (0.04) (0.037)
Without Roma population GP 3 ATET -0.105* -0.018 0 0.024* 0.03* 0.027* 0.023* 0.019* 0.021* 0.02* 1624
Without Roma population GP 3 s.e. (0.013) (0.014) (0.013) (0.013) (0.012) (0.011) (0.01) (0.01) (0.009) (0.008)
Without Roma population GP 4 ATET -0.11* -0.036* -0.013 -0.005 0.012 0.009 0.009 0.019 0.029* 0.021* 517
Without Roma population GP 4 s.e. (0.018) (0.021) (0.019) (0.017) (0.018) (0.016) (0.016) (0.014) (0.014) (0.014)
Without Roma population GP 5 ATET -0.162* -0.043 0.008 0.029 0.03 0.057* 0.052* 0.064* 0.052* 0.033 289
Without Roma population GP 5 s.e. (0.024) (0.032) (0.033) (0.031) (0.029) (0.025) (0.026) (0.023) (0.023) (0.023)
Without Roma population AW 3 ATET 0.007 0.091 0.025 -0.074 -0.116 0.147 0.309* NA NA NA 9
Without Roma population AW 3 s.e. (0.234) (0.276) (0.279) (0.265) (0.275) (0.231) (0.201) (NA) (NA) (NA)
Without Roma population AW 4 ATET 0.156* 0.141 0.12 0.101 0.096 0.09 0.083 0.05 0.025 0.071 17
Without Roma population AW 4 s.e. (0.097) (0.102) (0.099) (0.097) (0.089) (0.077) (0.081) (0.081) (0.084) (0.071)
Without Roma population AW 5 ATET -0.039 -0.047 -0.045 -0.083 -0.135* -0.168* -0.149* -0.181* -0.171* -0.144* 51
Without Roma population AW 5 s.e. (0.053) (0.064) (0.064) (0.068) (0.067) (0.071) (0.072) (0.073) (0.078) (0.074)
Without Roma population VAW 3 ATET -0.046 0.123* 0.176* 0.158* 0.147* 0.129* 0.122* 0.093* 0.084* 0.064* 100
Without Roma population VAW 3 s.e. (0.051) (0.052) (0.045) (0.041) (0.038) (0.034) (0.031) (0.031) (0.029) (0.029)
Without Roma population VAW 4 ATET -0.108* -0.013 0.03 0.078 0.105* 0.11* 0.104* 0.087* 0.077* 0.056* 71
Without Roma population VAW 4 s.e. (0.051) (0.057) (0.056) (0.048) (0.041) (0.036) (0.033) (0.032) (0.031) (0.031)
Without Roma population VAW 5 ATET -0.076 -0.056 0.013 -0.027 -0.024 0.011 0.021 0.033 0.024 0.03 43
Without Roma population VAW 5 s.e. (0.074) (0.08) (0.085) (0.088) (0.083) (0.075) (0.072) (0.061) (0.056) (0.053)

Note: Statistical significance at the level 0.05 is marked with * Source: COLSAF database

3.4 Placebo test estimates

As we are aware of the limited options in supporting our assumptions empirically, we support the credibility of our results with a placebo test, using a randomly generated variable copying the observed distribution of the time elapsed between the start of unemployment and the start of participation in one of the ALMP programmes. We create our placebo variable in the following steps. First, we generate the observed time difference between the starting date of registered unemployment and the date of the start of the ALMP participation (S). While participants have low values of S (under 20, since our sample only contains participation taking place during 2011 and job seekers registered not earlier than 2005), depending on the start of their participation in the ALMP programme, non-participants were assigned an extremely high value of S = 333. In the second step, we extract the distribution of S for each of our programme-specific samples. Finally, we randomly assign a value of PSR to each individual in the sample and use the PSR variable instead of the S variable in the specification of our model. The procedure is performed by the R-code reported in the following chunk of code.

Following this procedure, we acquire results that are uniformly not statistically significant.

References:

Vikström J (2017) Dynamic treatment assignment and evaluation of active labor market policies. Labour Economics 49(C):42–54